

ON THE HEREDITY OF WEAK COMPACT GENERATING

BY
K. JOHN AND V. ZIZLER

ABSTRACT

If X is a Banach space such that X, X^* are subspaces of Banach spaces generated by weakly-compact sets, then X is also generated by a weakly-compact set and admits an equivalent Fréchet smooth norm.

1. Introduction

It was shown by H. P. Rosenthal [10] that the property of being weakly-compactly generated (WCG) is not hereditary. Nevertheless, in the class of Banach spaces having an equivalent Fréchet smooth norm, WCG property is already hereditary [2, 6]. Furthermore, W. B. Johnson and J. Lindenstrauss constructed a non-WCG Banach space X with X^* WCG [9]. However, if X is a subspace of a WCG space and X^* is WCG, then X is WCG (cf. [9, 7]).

The purpose of this note is to show the result stated in the Abstract. It extends also the result of [4] which states that if X, X^* are both WCG, then X has an equivalent Fréchet smooth norm.

2. Notations and definitions

A real Banach space X is generated by a weakly-compact set $K \subset X$ if $X = \overline{\text{sp}}K$, where $\overline{\text{sp}}K$ means the closed linear hull of K . A system $\{(x_\alpha, f_\alpha), \alpha \in \Gamma\}$, $x_\alpha \in X$, $f_\alpha \in X^*$ is a shrinking Markuševič basis of X if $f_\alpha(x_\beta) = \delta_{\alpha\beta}$, $\overline{\text{sp}}\{x_\alpha\} = X$, $\overline{\text{sp}}\{f_\alpha\} = X^*$. A norm $|\cdot|$ of a Banach space X is locally, uniformly rotund (LUR) if whenever $x, x_n \in X$, $|x| = |x_n| = 1$, $\lim |x + x_n| = 2$, then $\lim |x - x_n| = 0$. If Y, Z are closed subspaces of a Banach space X such that $X = \overline{Y + Z}$, $Y \cap Z = \{0\}$, then Y, Z are called quasicomplements to each other in X . Unless stated otherwise, by a subspace we will mean a closed subspace. If K is an absolutely convex set in a linear space, then $|\cdot|_K$ denotes the seminorm on $\text{sp } K$ (the linear hull of K) given by K and the topology of this seminorm is referred to as the K -topology. T/Z denotes the restriction of the map T to Z . If

Received June 6, 1974

$K \subset X$, then $K^0 \subset X^*$ is the polar of K in X^* . By Re , we will mean the restriction to X , where $X \subset U$. Thus, $\text{Re}: U^* \rightarrow X^*$.

3. Statement of the results

Before proceeding to formulation of the results of this paper, we recall that if the dual norm of X^* is LUR, then the norm of X is Fréchet differentiable (on $X \setminus \{0\}$) by the result of R. Lovaglia (cf. [3]). Furthermore, if $\{(x_\alpha, f_\alpha)\}$ is a shrinking Markuševič basis of a Banach space X , then easily, $\cup x_\alpha \cup \{0\}$ is a weakly compact set generating X , if we suppose that $\{x_\alpha\}$ is bounded. Thus, we may state our main result as:

THEOREM. *If X is a Banach space such that X, X^* are subspaces of WCG Banach spaces U, V respectively, then X admits a shrinking Markuševič basis.*

COROLLARY 1. *Under the assumptions of the Theorem, X has an equivalent norm whose dual on X^* is LUR.*

COROLLARY 2. *Under the assumptions of the Theorem, and if $Y \subset X^*$ is a norm closed subspace of X^* , then Y has a Markuševič basis with dual coefficients from X . Moreover, if Y is total on X , then X has a Markuševič basis with dual coefficients from Y . Also, Y has a w^* closed quasicomplement in X^* .*

4. Proof of the results

The proof of the Theorem is built up in a series of lemmas and is based on the construction of suitable resolutions of identity, which was developed by J. Lindenstrauss and D. Amir [1]. Here we use also some arguments from [4, 5], namely the method for constructing w^* continuous projections invariant to some subspaces.

LEMMA 1. *Let X, U, V be as in the Theorem and let K_1, K_2 be absolutely-convex, weakly compact sets such that $U = \overline{\text{sp}} K_1$, $V = \overline{\text{sp}} K_2$. Let $B \subset X^*$ and $W \subset \overline{\text{sp}} K_2$ be finite dimensional subspaces. Let $\{b_i\}$ be a basis of B and let $\tilde{b}_i \in U^*$ be such that $\text{Re } \tilde{b}_i = b_i$. Put $\tilde{B} = \overline{\text{sp}} \{\tilde{b}_i\}$. Then, there are linear projections P on V and \tilde{P} on U^* with the properties:*

- (i) P is continuous on V ;
- (ii) $PW \subset W$ and $P/\text{sp } K_2$ is K_2 -continuous;
- (iii) P/X^* is w^* continuous;
- (iv) P is onto B ; and
- (i') \tilde{P} is w^* continuous (on U^*)

- (ii') $\tilde{P}X^\perp \subset X^\perp$
- (iii') $\operatorname{Re} \tilde{P}u^* = P \operatorname{Re} u^* \text{ for all } u^* \in U^*$
- (iv') \tilde{P} is onto \tilde{B} .

PROOF. Let τ be a locally-convex topology on V which is weaker than the norm topology on V , the K_2 -topology on $\operatorname{sp} K_2$ and the w^* topology on X . Let $\{a_i\}$ be a basis of $B \cap W$.

Let us complete $\{a_i\}$ by systems $\{c_i\}$ and $\{d_i\}$ to bases of B and W respectively. Then $\{a_i\} \cup \{c_i\} \cup \{d_i\}$ is a basis of $\operatorname{sp}(B \cup W)$. Define on $\operatorname{sp}(B \cup W)$ a projection P by

$$P(\sum \alpha_i a_i + \sum \beta_i c_i + \sum \gamma_i d_i) = \sum \alpha_i a_i + \sum \beta_i c_i.$$

Now let us extend P to the whole V by the Hahn-Banach theorem used for the τ topology.

This construction produces a linear projection P on V with the properties (i)–(vi). If b_i is the basis of B from Lemma 1, then there are $x_1, \dots, x_n \in X$ ($n = \dim B$), such that if $x^* \in X^*$, then

$$Px^* = \sum x^*(x_i) b_i.$$

If we define on U

$$\tilde{P}u^* = \sum u^*(x_i) \tilde{b}_i,$$

we have the second desired projection. The following definition will be suitable.

DEFINITION. Let $X, U, V, K_2, B = \operatorname{sp}\{b_i\}, \tilde{B} = \operatorname{sp}\{\tilde{b}_i\}$ be as in Lemma 1 and let $Z \subset V$ and $\tilde{Z} \subset U^*$ be finite dimensional subspaces, $B \subset Z$, $\dim Z/B = n$. Put $W = (\operatorname{sp} K_2) \cap Z$. We say that Z, \tilde{Z} form a suitable pair of subspaces if there are projections P, \tilde{P} with all the properties from Lemma 1 and a basis (z_1, \dots, z_n) of $(I - P)Z$ and a basis $(\tilde{z}_1, \dots, \tilde{z}_b)$ of \tilde{Z} , such that

- (1) (z_1, \dots, z_n) is a basis of $(I - P)Z \cap \operatorname{sp} K_2 \cap X^*$;
- (2) (z_1, \dots, z_b) is a basis of $(I - P)Z \cap X^*$;
- (3) $(z_1, \dots, z_a, z_{b+1}, \dots, z_c)$ is a basis of $(I - P)Z \cap \operatorname{sp} K_2$;
- (4) $\operatorname{Re} \tilde{z}_i = z_i$ for $i = 1, \dots, b$.

LEMMA 2. Let $X, U, V, K_1, K_2, B = \operatorname{sp}\{b_i\} \subset X^*$, $\tilde{B} = \operatorname{sp}\{\tilde{b}_i\} \subset U^*$ be as in Lemma 1. Furthermore, let $f_1, \dots, f_k \in X$, and let m, n be positive integers. Then

there are \aleph_0 -dimensional subspace $C \subset V$ and \aleph_0 -dimensional subspace $\tilde{C} \subset U^*$ such that for any $\varepsilon > 0$ and any suitable pair of subspaces $Z \subset V$, $\tilde{Z} \subset U^*$ with $B \subset Z$, $\dim Z/B = n$ and for any subspace $F \subset X^\perp \subset U^*$, $\dim F = m$, there exist linear operators $T = T(Z) : Z \rightarrow C$ and $\tilde{T} = \tilde{T}(\tilde{Z}, F) : \tilde{B} \oplus \tilde{Z} \oplus F \rightarrow \tilde{C}$ such that;

- (i) $|T| \leq 1 + \varepsilon$;
- (ii) $T(Z \cap \text{sp } K_2) \subset \text{sp } K_2$ and $|T/Z \cap \text{sp } K_2|_{K_2} \leq 1 + \varepsilon$;
- (iii) $T(Z \cap X^*) \subset X^*$;
- (iv) $|f_i(Tx^*) - f_i(x^*)| \leq \varepsilon |x^*|$ for any $x^* \in X^* \cap Z$ and $i = 1, \dots, k$;
- (v) $Tb = b$ for $b \in B$;
- (i') $|\tilde{T}| \leq 1 + \varepsilon$ and $|\tilde{T}|_{K_0} = 1 + \varepsilon$;
- (ii') $\tilde{T}F \subset X^\perp$;
- (iii') $\text{Re } \tilde{T}u^* = T \text{Re } u^*$ for all $u^* \in \tilde{B} \oplus \tilde{Z} \oplus F$.

PROOF. Let r be a positive integer. Let $\tilde{b}_1, \dots, \tilde{b}_p \in \tilde{B}$ be so that

- 1) if $\tilde{b} \in \tilde{B}$, $|\tilde{b}| \leq r$, then there is $h \in \{1, \dots, p\}$ such that $|\tilde{b} - \tilde{b}_h| \leq r^{-1}$;
- 2) if $\tilde{b} \in B$, $|\tilde{b}|_{K_0} \leq r$, then there is $h \in \{1, \dots, p\}$ such that $|\tilde{b} - \tilde{b}_h|_{K_0} \leq r^{-1}$;
- 3) if $\tilde{b} \in \tilde{B}$, $|\text{Re } \tilde{b}| \leq r$, then there is $h \in \{1, \dots, p\}$ such that $|\text{Re } \tilde{b} - \text{Re } \tilde{b}_h| \leq r^{-1}$; and
- 4) if $\tilde{b} \in \tilde{B}$, $|\text{Re } \tilde{b}| \leq r$, $\text{Re } \tilde{b} \in \text{sp } K_2$, then there is $h \in \{1, \dots, p\}$ such that $\text{Re } \tilde{b}_h \in \text{sp } K_2$ and $|\text{Re } \tilde{b} - \text{Re } \tilde{b}_h|_{K_2} \leq r^{-1}$.

Assume that $\tilde{b}_1, \dots, \tilde{b}_{p'} (p' \leq p)$ are exactly those $\tilde{b}_1, \dots, \tilde{b}_p$ for which $\text{Re } \tilde{b}_h \in \text{sp } K_2$. Consider the Euclidean space R^{n+m} with the norm $|\lambda| = \sum |\lambda_i|$. Choose elements $\lambda^1, \dots, \lambda^q$ of the unit sphere $S^{n+m} = \{\lambda \in R^{n+m} ; |\lambda| = 1\}$ such that for any $\lambda \in S^{n+m}$ there is $j \in \{1, \dots, q\}$ such that $|\lambda - \lambda^j| \leq r^{-1}$.

If a, b, c are integers, $a, b, c \in \{1, n\}$, let us consider the following set of $(n+m+b)$ -tuples: $H = \{(x_1, \dots, x_n, \tilde{x}_1, \dots, \tilde{x}_b, \tilde{x}_{n+1}, \dots, \tilde{x}_{n+m})\}$, where $x_1, \dots, x_a \in X^* \cap \text{sp } K_2$, $x_{a+1}, \dots, x_b \in X^*$, $x_{b+1}, \dots, x_c \in \text{sp } K_2$, $x_{c+1}, \dots, x_n \in V$, $\tilde{x}_1, \dots, \tilde{x}_b$ are continuous extensions of x_1, \dots, x_b to U , $\tilde{x}_{n+1}, \dots, \tilde{x}_{n+m} \in F$.

Now if the integers $r, a, b, c, (1 \leq a \leq b \leq c \leq n)$ are given, let us define on H the following $Q = n + (a + c - b) + pq + p'q + kb + 2(b + m) + 2pq$ real valued functions:

$$|x_i| \quad (i = 1, \dots, n), \quad |x_i|_{K_2} \quad (i = 1, \dots, a, b+1, \dots, c);$$

$$\left| \text{Re } \tilde{b}_h + \sum_{i=1}^n \lambda^j x_i \right| \quad (h = 1, \dots, p; j = 1, \dots, q);$$

$$\left| \text{Re } \tilde{b}_h + \left(\sum_{i=1}^a + \sum_{i=b+1}^c \right) \lambda^j x_i \right|_{K_2} \quad (h = 1, \dots, p', j = 1, \dots, q);$$

$$f_l(x_i) \quad (l = 1, \dots, k; \quad i = 1, \dots, b);$$

$$|\tilde{x}_i| \quad (i = 1, \dots, b, n+1, \dots, n+m); \quad |x_i|_{K_1^0} \quad (i = 1, \dots, b, n+1, \dots, n+m);$$

$$\left| \tilde{b}_h + \sum_{i=1}^b \lambda_i \tilde{x}_i + \sum_{i=n+1}^{n+m} \lambda_i \tilde{x}_i \right| \quad (h = 1, \dots, p, \quad j = 1, \dots, q);$$

$$\left| \tilde{b}_h + \sum_{i=1}^b \lambda_i \tilde{x}_i + \sum_{i=n+1}^{n+m} \lambda_i \tilde{x}_i \right|_{K_1^0} \quad (h = 1, \dots, p, \quad j = 1, \dots, q).$$

These functions may be regarded as a function ϕ on H to R^Q .

Taking in R^Q the metric ρ of maximal coordinate distance, we see that we may choose for every fixed r, a, b, c a sequence $\{h'\} \subset H$ such that $\phi(\{h'\})$ is ρ -dense in $\rho(H)$. Let h'_i be the i^{th} coordinate of h' . Now let C be a subspace spanned by B and by $h'_i, i = 1, \dots, n, t = 1, 2, \dots$ and this for all $r = 1, 2, \dots$ and all a, b, c with $1 \leq a \leq b \leq c \leq n$. Similarly let \tilde{C} be the subspace spanned by \tilde{B} and by $h'_i, i = n+1, \dots, n+b, 2n+1, \dots, 2n+m, t = 1, 2, \dots$ and also for all admissible r, a, b, c .

Suppose now we are given an $\varepsilon > 0$, a suitable pair of subspaces $Z \subset V$, $\tilde{Z} \subset U^*$ with $Z \supset B$, $\dim Z/B = n$ and a subspace $F \subset X^\perp$, with $\dim F = m$. Let $P, \tilde{P}, z_1, \dots, z_a, z_{a+1}, \dots, z_b, z_{b+1}, \dots, z_c, z_{c+1}, \dots, z_n, \tilde{z}_1, \dots, \tilde{z}_b$ be from the Definition of Z, \tilde{Z} .

Furthermore, let $\tilde{z}_{n+1}, \dots, \tilde{z}_{n+m}$ be a basis of F . We may suppose that

$$\left| \sum_{i=1}^n \lambda_i z_i \right| \geq |(\lambda_1, \dots, \lambda_n)|,$$

$$\left| \left(\sum_{i=1}^a + \sum_{i=b+1}^c \right) \lambda_i z_i \right|_{K_2} \geq |(\lambda_1, \dots, \lambda_a, \lambda_{b+1}, \dots, \lambda_c)|,$$

$$\left| \left(\sum_{i=1}^b + \sum_{i=n+1}^{n+m} \right) \lambda_i \tilde{z}_i \right| \geq |(\lambda_1, \dots, \lambda_b, \lambda_{n+1}, \dots, \lambda_{n+m})|,$$

$$\left| \left(\sum_{i=1}^b + \sum_{i=n+1}^{n+m} \right) \lambda_i \tilde{z}_i \right|_{K_1^0} \geq |(\lambda_1, \dots, \lambda_b, \lambda_{n+1}, \dots, \lambda_{n+m})|,$$

for any λ_i 's (it suffices to multiply all z_i, \tilde{z}_i by a sufficiently large number).

Let s be so that $|z_i| \leq s$ ($i = 1, \dots, n$), $|z_i|_{K_2} \leq s$ ($i = 1, \dots, a, b+1, \dots, c$), $|\tilde{z}_i| \leq s$ ($i = 1, \dots, b, n+1, \dots, n+m$), $|\tilde{z}_i|_{K_1^0} \leq s$ ($i = 1, \dots, b, n+1, \dots, n+m$). Let moreover

$$|P/Z| \leq K, \quad |P/(Z \cap \text{sp } K_2)|_{K_2} \leq K, \quad |\tilde{P}/(\tilde{B} \oplus \tilde{Z} \oplus F)| \leq K, \\ |\tilde{P}/(\tilde{B} \oplus \tilde{Z} + F)|_{K_1^0} \leq K$$

(observe that no continuity of projections P, \tilde{P} on the whole spaces is needed). Let $M > 1$ be so that $M > 6(1+K)^{-1}$ and choose an integer r so that $2s+1 \leq \varepsilon(r-s)$ and $r^{-1}s \leq M^{-1}$. We will fix these r, a, b, c in the rest of the proof (a, b, c are from the Definition of Z, \tilde{Z}).

Let

$$x = (x_1, \dots, x_n, \tilde{x}_1, \dots, \tilde{x}_b, \tilde{x}_{n+1}, \dots, \tilde{x}_{n+m}) \in \{h'\}$$

be such that $\rho(\phi(x), \phi(z)) \leq M^{-1}$, where

$$z = (z_1, \dots, z_n, \tilde{z}_1, \dots, \tilde{z}_b, \tilde{z}_{n+1}, \dots, \tilde{z}_{n+m}).$$

Define on Z

$$T\left(b + \sum_{i=1}^n \lambda_i z_i\right) = b + \sum_{i=1}^n \lambda_i x_i \quad (b \in B),$$

and on $\tilde{B} \oplus \tilde{Z} \oplus F$

$$\tilde{T}\left(\tilde{b} + \left(\sum_{i=1}^b + \sum_{i=n+1}^{n+m}\right) \lambda_i \tilde{z}_i\right) = b + \left(\sum_{i=1}^b + \sum_{i=n+1}^{n+m}\right) \lambda_i \tilde{x}_i \quad (\tilde{b} \in \tilde{B}).$$

We prove that $\tilde{T}F \subset X^\perp$. If

$$f = \tilde{b} + \left(\sum_{i=1}^b + \sum_{i=n+1}^{n+m}\right) \lambda_i \tilde{z}_i \in F,$$

then

$$\operatorname{Re} \left(\tilde{b} + \sum_{i=1}^b \lambda_i \tilde{z}_i \right) = 0 \quad \text{on } X.$$

Thus $\lambda_i = 0$ for $i = 1, \dots, b$ and $\tilde{b} = 0$ because $z_i \in (I - P)Z$. Therefore, we have

$$\tilde{T}f = \sum_{i=n+1}^{n+m} \lambda_i \tilde{x}_i \in X^\perp.$$

Furthermore, if

$$f = \tilde{b} + \sum_{i=1}^b \lambda_i \tilde{z}_i + \sum_{i=n+1}^{n+m} \lambda_i \tilde{z}_i \in \tilde{B} \oplus \tilde{Z} \oplus F,$$

then

$$\operatorname{Re} T f = \operatorname{Re} \left(\tilde{b} + \sum_{i=1}^b \lambda_i \tilde{x}_i + \sum_{i=n+1}^{n+m} \lambda_i \tilde{x}_i \right) = \operatorname{Re} \tilde{b} + \sum_{i=1}^b \lambda_i x_i = T \operatorname{Re} f.$$

The other properties of the operators T, \tilde{T} are derived similarly as in [5] (proof of Lemma 2).

LEMMA 3. *Let $X, U, V, K_1, K_2, B = \text{sp}\{b_i\} \subset X^*$, $\tilde{B} = \text{sp}\{\tilde{b}_i\} \subset U^*$ be as in Lemma 1, let \aleph be an infinite cardinal number, and let $B \subset X^*$ and $D \subset X$ be subspaces with $\text{dens } B \leq \aleph$, $\text{dens } D \leq \aleph$. Then there are linear operators $P: V \rightarrow V$ and $T: U^* \rightarrow U^*$ such that*

- (i) $|P| = 1$;
- (ii) $P(\text{sp } K_2) \subset \text{sp } K_2$ and $|P/\text{sp } K_2|_{K_2} = 1$;
- (iii) $PX^* \subset X^*$;
- (iv) $(P/X^*)^*f = f$ for $f \in D$;
- (v) $Pb = b$ for $b \in B$;
- (vi) P/X^* is $w^* - w^*$ continuous;
- (vii) P/X^* is a projection; and
- (i') $|T| = |T|_{K_1} = 1$;
- (ii') $TX^\perp \subset X^\perp$;
- (iii') $\text{Re } Tu^* = P \text{ Re } u^*$ for all $u^* \in U^*$.

PROOF. By induction on \aleph . If $\aleph = \aleph_0$, we first assume that $\dim B < \infty$ and prove that then there exist linear operators $P: V \rightarrow V$ and $T: U^* \rightarrow U^*$ having all properties stated in Lemma 3 except that P/X^* is a projection (see Lemma 3 in [1]). For this purpose, let us consider the net $\{(Z, \tilde{Z}, F)\}$, where $B \subset Z \subset V$, $\tilde{Z} \subset U^*$, Z, \tilde{Z} form a suitable pair of subspaces (see Definition), $F \subset X^\perp$, $\dim F < \infty$. Ordering is given by: $(Z_1, \tilde{Z}_1, F_1) < (Z_2, \tilde{Z}_2, F_2)$ iff $Z_1 \subset Z_2$ and $\tilde{Z}_1 \oplus F_1 \subset \tilde{Z}_2 \oplus F_2$. It is easy to see that the Z 's and $(\tilde{Z} \oplus F)$'s (Z, \tilde{Z}, F are from this net) exhaust all V and U^* respectively.

Let $\{f_i\}$ be a dense sequence in the unit sphere of D . It is easy to see by Lemma 2 that there are \aleph_0 -dimensional subspaces $C \subset V$, $\tilde{C} \subset U^*$ such that for any $(Z, \tilde{Z}, F) \in \{(Z, \tilde{Z}, F)\}$, there exist linear operators $T(Z): Z \rightarrow C$, $\tilde{T}(\tilde{Z}, F): \tilde{Z} \oplus F \rightarrow \tilde{C}$ with the properties from Lemma 2 for $\varepsilon = (\dim Z/B)^{-1}$ and $k = \dim Z/B$. If U_1 is the unit ball of U^* , then using Tichonov theorem for $(2U_1)^{U_1}$ and for $(2K_2)^{K_2}$ in the w^* and w topologies respectively, we see, similarly as in [1] that there is a subnet $\{(Z_\nu, \tilde{Z}_\nu, F_\nu)\}$ of $\{(Z, \tilde{Z}, F)\}$ such that the operators $T(Z_\nu)$, $\tilde{T}(\tilde{Z}_\nu, F_\nu)$ converge to the operators P, T in the weak and w^* operator topologies respectively. We extend P continuously on the whole V . Easily P and T have all the properties (i)–(v) and (i')–(iii') from the statement. Now (iii') implies that $(P/X^*)^*x = T^*x$ for $x \in X$ and (ii') implies $T^*X \subset X$. Thus $(P/X^*)^*X \subset X$ which is (vi). The first statement of this proof is proved.

Then we prove the whole Lemma 3 by use of arguments of [1] (Lemma 4) and those given above.

LEMMA 4. *Let X be as in the Theorem and let μ be the first ordinal of cardinality $\text{dens } X^*$. Then there is a long sequence of projections $\{P_\alpha : 0 \leq \alpha \leq \mu\}$ on X^* , $P_0 = 0$, $P_\mu = \text{identity}$, $P_\alpha P_\beta = P_\beta P_\alpha = P_\beta$ if $\beta < \alpha$, $\|P_\alpha\| = 1$ for $\alpha > 0$, $\text{dens } P_\alpha X^* = \bar{\alpha}$ for $\alpha \leq \omega$, $P_\alpha x^*$ is norm-continuous on ordinals for any fixed $x^* \in X^*$ and P_α 's are $w^* - w^*$ continuous.*

PROOF. Using Lemma 3, the arguments of [1, 5] and above.

PROOF OF THEOREM. By induction on $\text{dens } X^*$. If $\text{dens } X^* = \aleph_0$, then X has a shrinking Markuševič basis (see [3.8]). If the Theorem holds for any space Y with $\text{dens } Y^* < \aleph$ and if $\text{dens } X^* = \aleph$, then $(P_{\alpha+1} - P_\alpha)X$ has a shrinking Markuševič basis for any $\alpha < \mu$ (the projections P_α on X are the preduals of the projections from Lemma 4). This follows from the fact that $(P_{\alpha+1} - P_\alpha)X \subset U$, $((P_{\alpha+1} - P_\alpha)X)^*$ is also a subspace of a WCG Banach space since it is isomorphic to $(P_{\alpha+1}^* - P_\alpha^*)X^* \subset V$ and

$$\text{dens } ((P_{\alpha+1} - P_\alpha)X)^* = \text{dens } (P_{\alpha+1}^* - P_\alpha^*)X^* < \aleph.$$

Now it is easy to see that the whole X admits a shrinking Markuševič basis (cf. [5]).

PROOF OF COROLLARY 1. See [11], Theorem 1.

PROOF OF COROLLARY 2. It may be shown by the methods discussed above that if $Y \subset X^*$ is a norm closed subspace of X^* then the P_α 's from Lemma 4 can be built up such that they preserve Y (since $Y \subset X^* \subset V$). Then we may use the arguments of [5] where also a recent result of W. B. Johnson on w^* closed quasicomplements is used (see [5]).

REFERENCES

1. D. Amir and J. Lindenstrauss, *The structure of weakly compact sets in Banach spaces*, Ann. of Math. **88** (1968), 35–46.
2. D. Friedland, *On closed subspaces of weakly compactly generated Banach spaces*, Israel J. Math., to appear.
3. V. F. Gapoškin and M. I. Kadec, *Operator bases in Banach spaces*, Matem. Sb. **61** (1963), 3–12.
4. K. John and V. Zizler, *A renorming of dual spaces*, Israel J. Math. **12** (1972), 331–336.
5. K. John and V. Zizler, *Projections in dual weakly compactly generated Banach spaces*, Studia Math., **49** (1973), 41–50.
6. K. John and V. Zizler, *Smoothness and its equivalents in the class of weakly compactly generated Banach spaces*, J. Functional Analysis **15** (1974), 1–11.
7. K. John and V. Zizler, *Weak compact generating in duality*, to appear in Studia Math.
8. W. B. Johnson, *Markuševič bases and duality theory*, Trans. Amer. Math. Soc. **149** (1970), 171–177.

9. W. B. Johnson and J. Lindenstrauss, *Some remarks on weakly compactly generated Banach spaces*, Israel J. Math., **17** (1974), 219–230.
10. H. P. Rosenthal, *The heredity problem for weakly compactly generated Banach spaces*, Compositio Math., **28** (1974), 83–111.
11. S. Trojanski, *On equivalent norms and minimal systems in nonseparable Banach spaces*, Studia Math., **43** (1972), 125–138.

MATHEMATICAL INSTITUTE CSAV

AND

DEPARTMENT OF MATHEMATICS, CHARLES UNIVERSITY

PRAHA, CZECHOSLOVAKIA